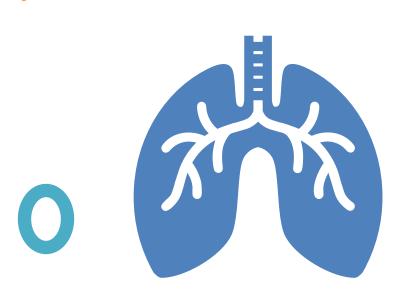


Respiratory Failure

- Dr. Ahmad Arraqap
- Anesthesia department
- Faculty of Medicine
- University of Jordan


Lecture outline

- Definition and Classification
- Pathophysiology
- <u>Etiology</u>
- Clinical Presentation
- Diagnosis
- Management

Definition

- Respiratory failure is a lifethreatening condition in which the respiratory system fails in one or both of its main functions:
- Gas exchange (oxygenation)
- ❖ Ventilation (CO₂ elimination)
- It is defined physiologically as:
- ❖ PaO₂ < 60 mmHg (hypoxemia) on room air
- ❖ PaCO₂ > 50 mmHg (hypercapnia) with pH < 7.35</p>

Classification

Based on Gas Abnormalities

Type I (Hypoxemic):

- PaO₂ < 60, PaCO₂ normal/low.
- Mechanism: V/Q mismatch, shunt, diffusion impairment.
- Examples: ARDS, pneumonia, pulmonary edema, pulmonary embolism.

Type II (Hypercapnic):

- PaCO₂ > 50, often with hypoxemia.
- Mechanism: hypoventilation (alveolar).
- Examples: COPD, asthma, neuromuscular weakness, drug overdose.

Based on Gas Abnormalities

Type III (Perioperative/Atelectatic):

- •Postoperative atelectasis → reduced FRC.
- •Examples: abdominal/thoracic surgery, obesity.

Type IV (Shock-related):

•Respiratory muscle hypoperfusion and fatigue in shock.

Based on Onset

- Acute respiratory failure –
 develops within minutes to hours
 (e.g., trauma, acute asthma,
 ARDS).
- Chronic respiratory failure –
 develops gradually with
 compensatory mechanisms (e.g.,
 advanced COPD, obesity
 hypoventilation).
- Acute on chronic acute decompensation in a chronically compromised patient (e.g., COPD with pneumonia).

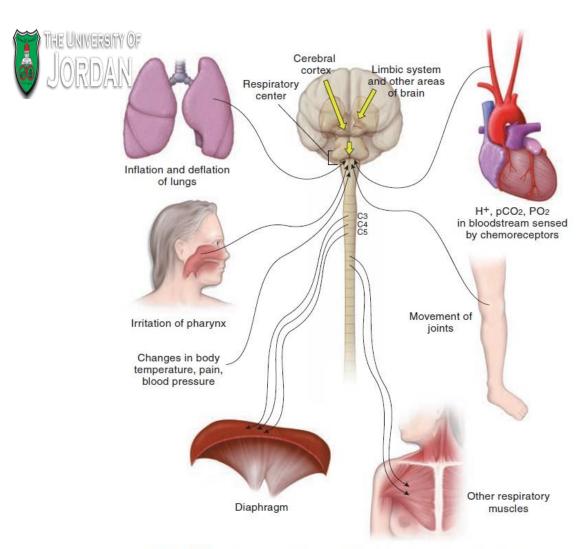


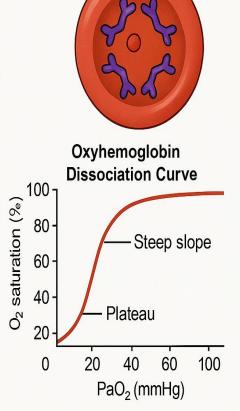
FIGURE 10.16. A Schematic Representation of the Regulation of Respiration


Respiratory system function depends on :

- •CNS control.
- •Neuromuscular function.
- Upper airway muscles and reflexes.
- Thorax and pleura.
- •Alveolar function.

Gas Exchange & Physiology

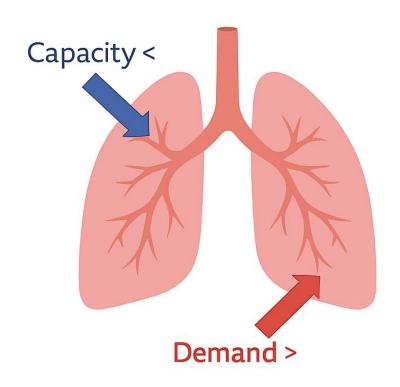
- Three key processes:
- 1. Oxygen transfer across alveoli
- 2. Oxygen transport to tissues
- 3. CO₂ removal from blood → alveolus → environment



Gas Exchange & Physiology

- O_2 transport: binds to Hb (1 g Hb = 1.36 mL O_2)
- Oxyhemoglobin dissociation curve = sigmoid (steep at 10–50 mmHg)
- CO₂ transport: dissolved, bicarbonate, carbamino compounds

O₂ Transport


- Hemoglobin carries most O₂
 (1 g Hb = 1.36 mL O₂)
- Oxyhemoglobin dissociation curve: sigmoid shape
 Steep slope (PaO₂10-50 mml small ↓PaO₂→large saturation
- Plateau (>70 mmHg): safety margin against hypoxemia

Respiratory Failure Basics

- Inability to maintain adequate O₂ and/or CO₂ exchange
- Causes:
 - Airways, alveoli, CNS, PNS, respiratory musceles, and cst wall
 - Shock states: cardiogenic, hypovolemic, septic
- Ventilatory capacity vs demand
 - Capacity = max ventilation sustainable without fatigue
 - Demand = ventilation needed for stable PaCO₂
 - Failure occurs when capacity < demand

Alveolar Ventilation & A-a Gradient

Alveolar Ventilation

- At steady state:
 CO₂ produced by tissues = CO₂ eliminated by lungs.
- Expressed mathematically:

•
$$V_A = K \times \frac{V_{CO_2}}{PaCO_2}$$

Alveolar-Arterial (A-a) Gradient

- The efficiency of lungs at carrying out of respiration
- A-a $Gradient = PAO_2$ - PaO_2
- Normal values:
 - 5–15 mmHg (young adults)
 - Increases with age \rightarrow normal ≈ (Age/4 + 4) mmHg

Alveolar Gas Equation

- PAO2 = FiO2 (PB Pwater) PaCO2/0.8,
- ✓ PAO2 = Alveolar partial pressure of oxygen
- ✓ FiO2 = Fraction of inspired oxygen
- ✓ PB = Barometric (Atmospheric) pressure
- ✓ Pwater = Vapor pressure of water at body temperature (37°C)=47 mmHg
- ✓ PaCO2 = Partial pressure of arterial carbon dioxid

Clinical Application

PaCO₂ reflects ventilation.

A-a gradient reflects oxygenation efficiency.

Even in normal lungs:

Markedly increased A-a gradient is a hallmark of pulmonary disease causing hypoxemia (e.g., ARDS, pneumonia, PE).

Mild V/Q mismatch

Small **right-to-left shunt**→ causes PAO₂ to be slightly higher than PaO₂.

• The pathophysiologic mechanisms

Hypoxemic respiratory failure

V/Q mismatch

• Shunt

V/Q mismatch

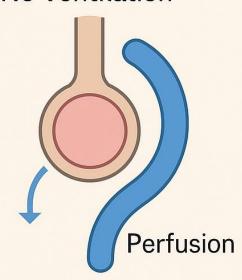
- Most common cause of hypoxemia
- Caused by
- ventilation of non-perfused alveoli. (highV/Q ratio)
- Perfusion to non-ventilated alveoli(Low V/Q ratio)

 Admin. of 100% O2 eliminate hypoxemia

V/Q Mismatch

Dead Space

Ventilation



High V/

- High V/Q
- Acts like dead space

Shunt

No Ventilation

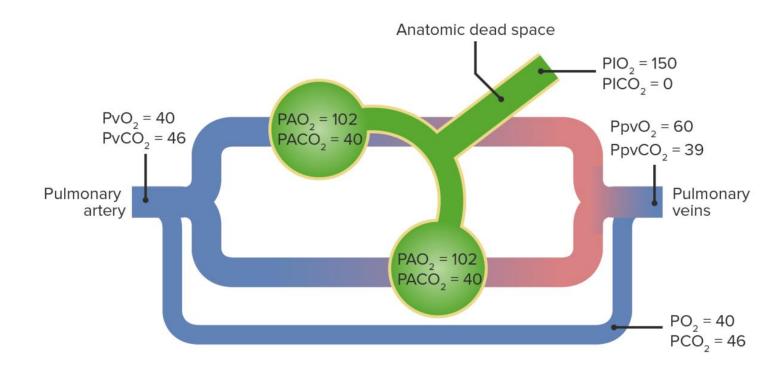
- Low V/Q
- Acts like a shunt

Shunt

- Right-to-left shunt
- Blood is shunted from the right side of the heart to the left side without undergoing oxygenation.
- Deoxygenated blood mixes with oxygenated blood → ↓ arterial pressure of O₂

Shunt

 The deoxygenated blood bypasses the ventilated alveoli and mixes with oxygenated blood → hypoxemia


 Persistent of hypoxemia despite 100% O2 inhalation

• Hypercapnia occur when shunt is excessive > 60%

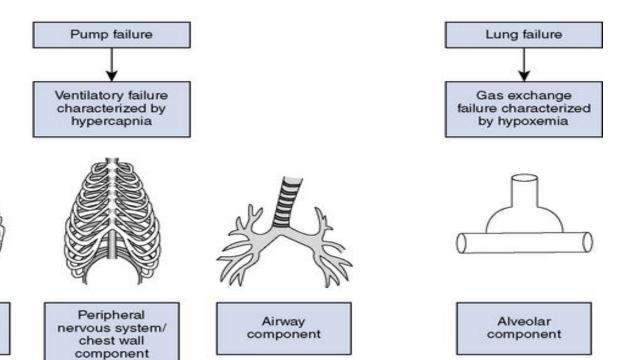
Shunt

- Anatomic shunt exists in normal lungs because of the bronchial and thebesian circulations, which account for 2-3% of shunt.
- A normal right-to-left shunt may occur from atrial septal defect, ventricular septal defect, patent ductus arteriosus, or arteriovenous malformation in the lung.

Hypercapnic respiratory failure

Hypoventilation

Hypoventilation


- Occurs when ventilation ↓ 4-6 l/min
- Causes
 - Depression of CNS from drugs
 - Neuromuscular disease of respiratory msusles
- ↑PaCO2 and ↓PaO2
- Alveolar –arterial PO2 gradient is normal
- COPD

Respiratory pathway affecting carbon dioxide elimination					
Central nervous system	"Won't breathe"				
\downarrow					
Peripheral nervous system	"Can't breathe"				
\downarrow					
Respiratory muscles					
\downarrow					
Chest wall and pleura					
\downarrow					
Upper airway					
\downarrow					
Lungs	Abnormal gas exchange: "Can't breathe enough"				

Etiology

Respiratory Failure

Central

nervous system component

Etiology of hypoxemic respiratory failure

- ✓ Right-to-left shunt:
 - ✓ <u>Pulmonary edema</u> (cardiogenic and noncardiogenic)
 - ✓ Pneumonia
 - ✓ Pulmonary hemorrhage
 - ✓ Aspiration
 - ✓ Atelectasis
 - ✓ ARDS
- √ V/Q mismatch:
 - ✓ Pulmonary embolism
 - ✓ Asthma
 - ✓ Chronic obstructive <u>pulmonary disease</u> (<u>COPD</u>)
 - ✓ Cystic fibrosis
 - ✓ Interstitial lung disease
 - ✓ Pulmonary hypertension
- ✓ Low inspired oxygen: high altitude
- ✓ Hypoventilation:
 - ✓ Sedative medications
 - ✓ Neuromuscular conditions

Mechanisms, etiology, and management of acute hypoxemic respiratory failure

Cause of hypoxemia*	Definition	Etiologies	A-a gradient	PaCO ₂	Response to oxygen	Treatment
V/Q mismatch	Imbalance of lung perfusion relative to ventilation: Low V/Q - Regions underventilated relative to perfusion (shunt is extreme form of low V/Q mismatch; refer to below) High V/Q - Regions that are overventilated relative to perfusion (dead space is extreme form of high V/Q mismatch)	Embolic disease (venous pulmonary embolism, fat embolism, amniotic fluid embolism, malignant cells) Pulmonary vascular disease (destroys capillary beds and limits perfusion to alveoli) Chronic obstructive lung disease/emphysema (destroys the pulmonary capillary-alveolar interface) Interstitial diseases (eg, pulmonary edema, pulmonary inflammation) Low flow cardiac output states	High	Typically normal (unless associated with hypoventilation or significant increase in dead space)	Yes (unless due to shunt)	 Supplemental oxygen Treat underlying cause
Right-to-left shunt	Extreme form of low V/Q mismatch: Anatomic (ie, mechanical shunt) Physiologic (ie, typically capillary shunt)	Anatomic: Cardiac shunt (eg, ASD, PFO, VSD) Intravascular shunt (pulmonary or other AVM, hepatopulmonary syndrome) Physiologic: Capillary shunt (eg, atelectasis, edema, pneumonia) Alveolar filling disorders (eg, fluid, hemorrhage, pus, cells, protein, lipid) Complete airway obstruction (including angioedema)	High	Normal	No	Oxygen; however, it is frequently minimally responsive or unresponsive to oxygen Treat underlying cause
Hypoventilation	Reduced minute ventilation "can't breathe, won't breathe, can't breathe enough" !	Central neurologic disease (eg, stroke, sedation, hypothyroidism) Respiratory neuromuscular and chest wall diseases (eg, cervical-spine or phrenic nerve injury, Guillain-Barré syndrome, bilateral diaphragmatic weakness) Airway/alveolar disease (acute exacerbation of COPD, COPD, asthma, ILD)	Normal	Elevated	Yes	Supplemental oxygen (oxygen will improve oxygenation but will not resolve hypercapnia) Increase minute ventilation (eg, noninvasive ventilation or invasive ventilation) Treat underlying cause
Diffusion defect	 Impairment of gas exchange between alveoli and pulmonary capillaries Often overlaps with shunt or V/Q mismatch pathophysiology 	ILD Lung resection Emphysema Pulmonary vascular disease	High (occasionally normal)	Normal	Yes	 Supplemental oxygen Treat underlying cause
Reduced PiO ₂	■ Reduced PiO ₂ ^Δ	 Sudden change in elevation or new altitude Reduction in pressure during air travel in aircraft 	Normal	Normal or low (if hyperventilation present)	Yes	Descent if altitude is the causeSupplemental oxygenConsider acetazolamide
Increased oxygen extraction	 Reduced mixed venous oxygen content of blood returning to the right side of the heart 	 Decreased cardiac output Anemia Hypermetabolism (eg, fever, sepsis, hyperthyroidism, burns, trauma) 	High	Normal	Yes	Supplemental oxygen Treat underlying cause

A-a gradient: alveolar-arterial gradient; $PaCO_2$: arterial carbon dioxide tension; V/Q: ventilation/perfusion; ASD: atrial septal defect; PFO: patent foramen ovale; VSD: ventricular septal defect; AVM: arteriovenous malformation; COPD: chronic obstructive pulmonary disease; ILD: interstitial lung disease; PiO₂: inspired oxygen tension.

* Rare causes of hypoxemia include hemoglobinopathies, cyanide toxicity, methemoglobinemia, and leukocyte larceny.

¶ Refer to UpToDate content on hypercapnia.

Etiology of hypercapnic respiratory failure

- Diminished respiratory drive:
 - Sedative medications (opioids, benzodiazepines)
 - Brain stem lesions (affecting the central respiratory center)
 - Multiple <u>sclerosis</u> (bulbar dysfunction leading to central respiratory drive depression)
 - o Hypothermia
- Impaired respiratory muscle function:
 - Guillain-Barré syndrome
 - o Myasthenia gravis
 - o Amyotrophic lateral sclerosis
 - Multiple sclerosis
 - o **Botulism**
 - o <u>Tetanus</u>
 - o Spinal cord lesions
 - Muscle <u>fatigue</u> (seen with hypoxemic respiratory failure)
 - Malnutrition
 - Myopathy

Etiology of hypercapnic respiratory failure

- ➤ <u>Airway</u> obstruction:
 - o COPD
 - Asthma
 - o Obstructive sleep apnea
 - o Cystic fibrosis
 - Airway edema
- Diminished lung elasticity/compliance:
 - o Alveolar edema
 - o **Pneumonia**
 - Atelectasis
 - o ARDS
- > Diminished chest wall elasticity:
 - o Pleural effusion
 - o Obesity
 - Kyphoścoliosis
 - Abdominal distention
 - o **Pneumothorax**

Clinical Presentation

General signs and symptoms

- Vitals:
 - o Tachypnea
 - Tachycardia
 - Low transcutaneous oxygen saturation in hypoxemic respiratory failure (late sign)
- Dyspnea
- Increased work of breathing and use of accessory muscles of breathing
- Diaphoresis
- Altered mental status:
 - Restlessness and anxiety
 - Confusion
 - Somnolence
 - o Coma

Hypoxemic Respiratory Failure (Type 1):

- Dyspnea: Shortness of breath, especially with exertion, or even at rest if severe.
- Cyanosis: Bluish discoloration of the skin, lips, or nail beds due to low oxygen levels.
- **Tachypnea**: Increased respiratory rate as the body attempts to compensate for low oxygen levels.
- Use of Accessory Muscles: This is a sign of increased work of breathing as the body attempts to recruit additional muscles to aid in ventilation.
- Confusion/Agitation: Decreased oxygen supply to the brain can cause cognitive impairment and agitation.
- Fatigue: Severe cases can lead to exhaustion as the body's energy is used to compensate.

Hypercapnia Respiratory Failure (Type 2)

- Dyspnea: More often with shallow breathing.
- ☐ Headache: Elevated CO2 levels lead to vasodilation in the brain, causing increased intracranial pressure.
- ☐ Drowsiness or Confusion:

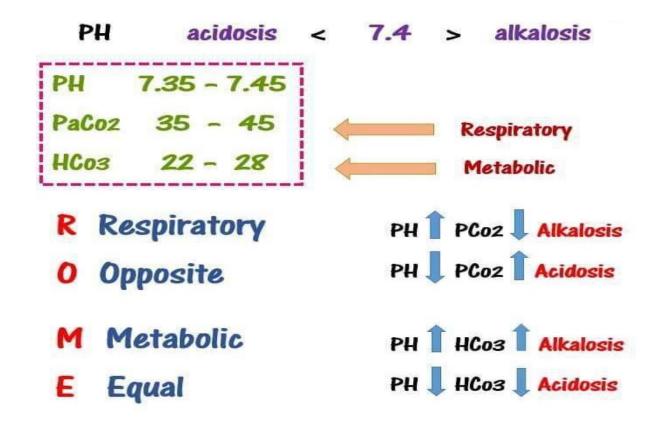
 Hypercapnia can depress the CNS,
 leading to confusion or even coma
 in severe cases.
- ☐ Tachypnea: Initially, the body tries to compensate by increasing the breathing rate to expel CO2.
- ☐ Peripheral Edema: If associated with chronic conditions like COPD or heart failure

Laboratory assessment

ABG analysis

_

- Lung function
- Vitalogram(pulmonary fuctio tes
- Chest Radiograph
- ECG
- Echocardiography
- CBC and blood cultures.

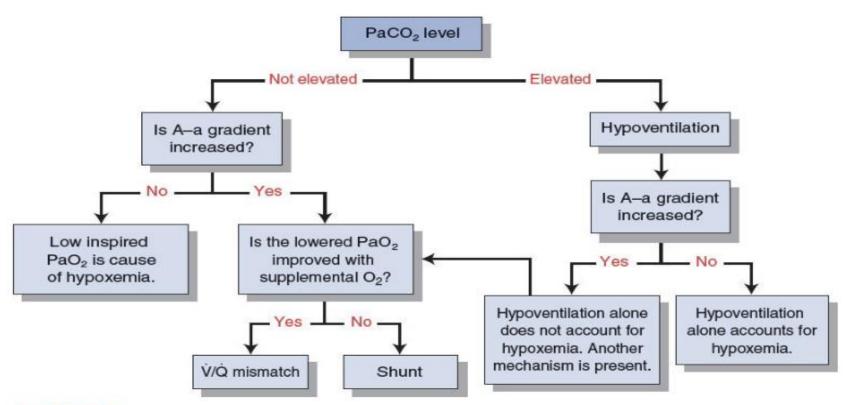


Diagnosis

Arterial blood gas

- An <u>arterial blood gas</u> (ABG) analysis is required in the diagnosis of respiratory failure. It measures and calculates components in arterial blood:
- Measured:
 - <u>рН</u>
 - Partial pressure of oxygen (PaO₂)
 - Partial pressure of CO₂ (PaCO₂)
- Calculated:
 - Bicarbonate (HCO₃)
 - Base excess
 - Oxygen saturation (SaO₂)

ARTERIAL BLOOD GAS INTERPRETATION


6-step approach:

- **Step 1:** Assess the internal consistency of the values using the Henderseon-Hasselbach equation: $[H+] = 24(PaCO_2)/[HCO_3-]$
- Step 2 Is there alkalemia or acidemia present? pH <
 7.35 academic pH > 7.45 alkalemia
- **Step 3** Is the disturbance respiratory or metabolic?
- **Step 4** Is there appropriate compensation for the primary disturbance? Usually, compensation does <u>not</u> return the pH to normal (7.35 7.45).
- Step 5: Calculate the anion gap (if a metabolic acidosis exists): AG= [Na+]-([Cl-] + [HCO₃-])-12 ± 2 (normaly 12)
- **Step 6:** If an increased anion gap is present, assess the relationship between the increase in the anion gap and the decrease in [HCO₃-].
- Assess the ratio of the change in the anion gap (Δ AG) to the change in [HCO₃-] (Δ [HCO₃-]): Δ AG/ Δ [HCO₃-]
- This ratio should be between 1.0 and 2.0 if an uncomplicated anion gap metabolic acidosis is present

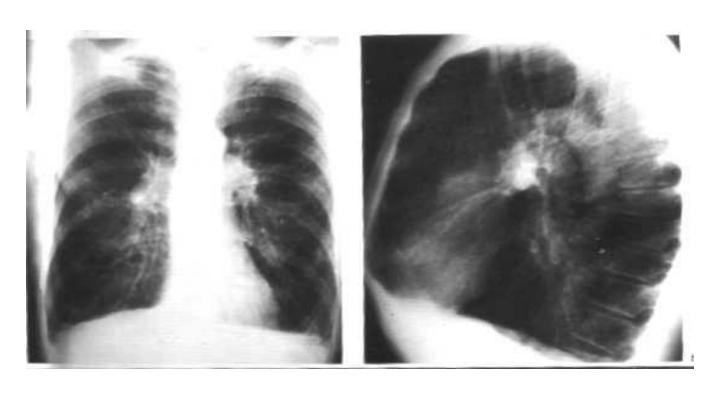
ARTERIAL BLOOD GAS INTERPRETATION

1° DISORDER	рН	P _a CO ₂	[HCO ₃]	COMPENSATION
AG/non-AG Metabolic Acidosis	ļ	↓ (2°)	↓ (1°)	$\begin{aligned} &\textbf{P}_{a}\textbf{CO}_{2, \text{ expect}} = \textbf{1.5 [HCO}_{3}] + \textbf{8} \pm \textbf{2} \\ &\textbf{If P}_{a}\textbf{CO}_{2, \text{ actual}} < \textbf{P}_{a}\textbf{CO}_{2, \text{ expect}} \text{ also 1° respiratory alkalosis} \\ &\textbf{If P}_{a}\textbf{CO}_{2, \text{ actual}} > \textbf{P}_{a}\textbf{CO}_{2, \text{ expect}} \text{ also 1° respiratory acidosis} \end{aligned}$
AG Acidosis "Delta/Delta"	For AG metabolic acidosis, calculate ΔAG / Δ[HCO ₃] = (AG - 12) / (24 - [HCO ₃]) if < 0.8, non-AG acidosis; if > 2, metabolic alkalosis			
Metabolic Alkalosis	1	↑ (2°)	↑ (1°)	$P_aCO_2 = 0.7 \text{ x [HCO}_3] + 20 \pm 5$ If $P_aCO_{2, \text{ actual}} < P_aCO_{2, \text{ expect}}$ also 1° respiratory alkalosis If $P_aCO_{2, \text{ actual}} > P_aCO_{2, \text{ expect}}$ also 1° respiratory acidosis
Respiratory Acidosis	1	↑ (1°)	↑ (2°)	For each ↑ 10 mmHg in P aCO ₂ Acute: ↑ [HCO 3] 1 mmol/L and ↓ pH 0.08 Chronic: ↑ [HCO 3] 4 mmol/L and ↓ pH 0.03
Respiratory Alkalosis	1	↓ (1°)	↓ (2°)	For each ↓ 10 mmHg in P aCO ₂ Acute: ↓ [HCO 3] 2 mmol/L and ↑ pH 0.08 Chronic: ↓ [HCO 3] 5 mmol/L and ↑ pH 0.03

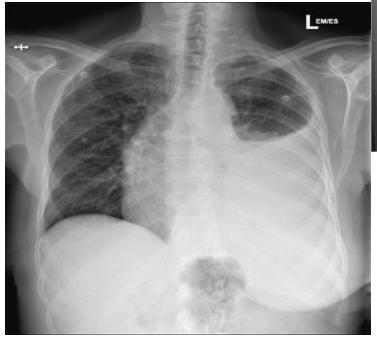
FIGURE

2.12

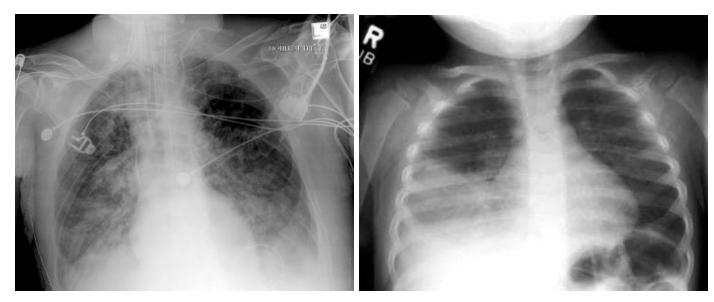
Evaluation of a patient with hypoxemia.

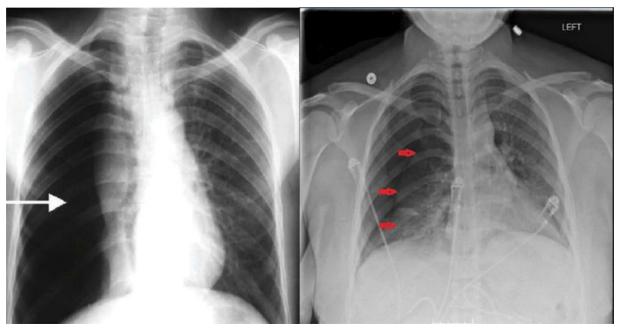

Chest X-ray/CT Scan

Provides imaging of the lungs to help identify conditions such as


- pneumonia
- > pulmonary edema
- ➤ Pneumothorax
- > Pleural effusion
- > COPD
- > ARDS

Hyperinflated Lungs : COPD




Pleural effusion

ARDS Pneumonia

Pneumothorax

•Pulmonary Function Tests:

- •Useful for assessing lung function, particularly in chronic conditions like COPD and asthma.
- •Electrocardiogram (ECG):
- May help rule out cardiac causes, such as arrhythmias or ischemia, which may lead to respiratory failure.
- •Pulse Oximetry:
- •Non-invasive monitoring of oxygen saturation. While helpful for continuous monitoring, it

Management of Respiratory Failure

Management of Respiratory Failure Principles

- Hypoxemia may cause death in RF
- Primary objective is to reverse and prevent hypoxemia
- Secondary objective is to control PaCO₂ and respiratory acidosis
- Treatment of underlying disease
- Patient's CNS and CVS must be monitored and treated

Oxygen Therapy

- Supplemental O₂ therapy essential
- titration based on SaO₂, PaO₂ levels and PaCO₂
- Goal is to prevent tissue hypoxia
- Arr Increase arterial PaO₂ > 60 mmHg(SaO₂ > 90%) or venous SaO₂ > 60%
- \triangleright O₂ dose either flow rate (L/min) or FiO₂ (%)

oxygen

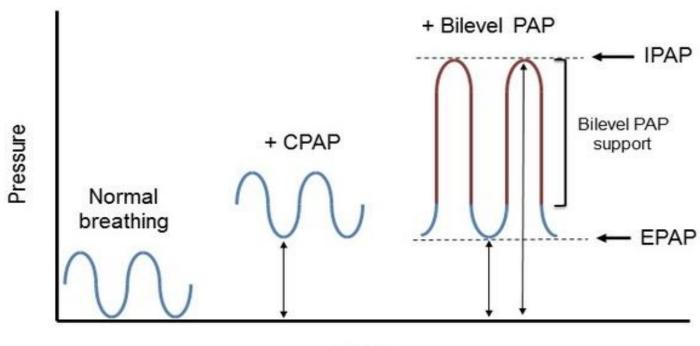
OXYGEN DELIVERY SYSTEMS

Device: Nasal Cannula Flow: 1 - 6 L/min FiO2: 25 - 40%

Device: Venturi Mask Flow: 2 - 15 L/min (based on valve) FiO2: 24 - 60% (precisely controlled)

Device: Face Mask Flow: 5 - 10 L/min FiO2: 40 - 60%

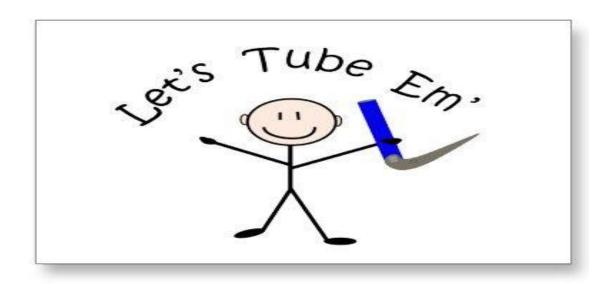
Device: Non-Rebreather Flow: 10 - 15 L/min FiO2: 80 - 95%


her De Na

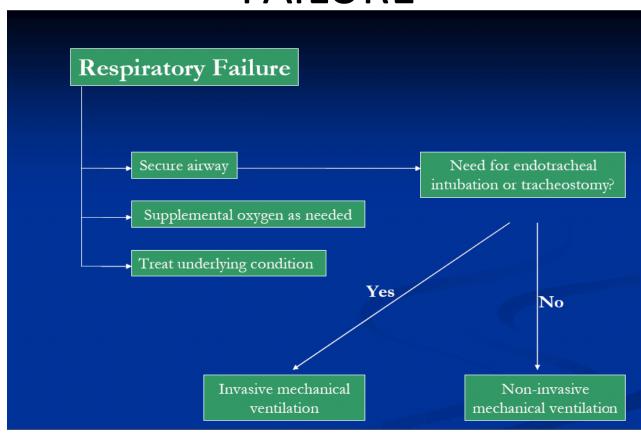
Device: High Flow Nasal Cannula Flow: up to 60 L/min

Device: Face Tent Flow: 10 - 15 L/min

FiO2: ~40%


FiO2: 21 - 100%

Time



If noninvasive devices failed

ACUTE RESPIRATORY FAILURE

Complications of ARF

- Pulmonary
 - Pulmonary embolism
 - barotrauma
 - pulmonary fibrosis (ARDS)
 - Nosocomial pneumonia
- Cardiovascular
 - Hypotension, ↓COP
 - Arrhythmia
 - MI, pericarditis
- GIT
 - Stress ulcer, ileus, diarrhea, hemorrhage

- Infections
 - Nosocomial infection
 - Pneumonia, UTI, catheter related sepsis
- Renal
 - ARF (hypoperfusion, nephrotoxic drugs)
 - Poor prognosis
- Nutritional
 - Malnutrition, diarrhea hypoglycemia, electrolyte disturbances

Prognosis of ARF

- Respiratory failure is a syndrome caused by a multitude of pathological states; therefore, the prognosis of this disease process is difficult to ascertain.
- In 2017, in the United States of America, however, the inhospital respiratory failure mortality rate was 12%.
- In-hospital mortality rates for patients requiring intubation with mechanical ventilation for asthma exacerbation, acute exacerbation of chronic obstructive pulmonary disease, and pneumonia were found to be 9.8%, 38.3%, and 48.4%, respectively.
- Lastly, the in-hospital mortality rate for acute respiratory distress syndrome was found to be 44.3%

Thank You